Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (212 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (24 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1 entry)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (9 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (36 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (51 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1 entry)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (22 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (12 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (40 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (12 entries)

Global Index

A

anti_rename [lemma, in PR.sn_inductive_2a]
ap [definition, in PR.fintype]
apc [definition, in PR.fintype]
app [constructor, in PR.stlc]
axioms [library]


B

Base [constructor, in PR.stlc]


C

closed_appR [lemma, in PR.sn_inductive_soundness_1a]
closed_lam [lemma, in PR.sn_inductive_soundness_1a]
CommaNotation [module, in PR.fintype]
_ , _ (subst_scope) [notation, in PR.fintype]
comp [definition, in PR.fintype]
compComp_tm [lemma, in PR.stlc]
compComp'_tm [lemma, in PR.stlc]
compRenRen_tm [definition, in PR.stlc]
compRenSubst_tm [definition, in PR.stlc]
compRen_tm [lemma, in PR.stlc]
compRen'_tm [lemma, in PR.stlc]
compSubstRen__tm [definition, in PR.stlc]
compSubstSubst_tm [definition, in PR.stlc]
congr_lam [lemma, in PR.stlc]
congr_app [lemma, in PR.stlc]
congr_Fun [lemma, in PR.stlc]
congr_Base [lemma, in PR.stlc]
cr [lemma, in PR.sn_inductive_2b]
ctx [definition, in PR.sn_inductive_2b]


E

extRen_tm [definition, in PR.stlc]
ext_SN [lemma, in PR.sn_inductive_2a]
ext_tm [definition, in PR.stlc]


F

fin [definition, in PR.fintype]
fintype [library]
Fun [constructor, in PR.stlc]
funcomp [definition, in PR.fintype]
fundamental_backwards [lemma, in PR.sn_inductive_soundness_1a]


H

has_type [inductive, in PR.sn_inductive_2b]


I

id [definition, in PR.fintype]
idren [definition, in PR.fintype]
ids [projection, in PR.fintype]
ids [constructor, in PR.fintype]
idSubst_tm [definition, in PR.stlc]
id_red [lemma, in PR.sn_inductive_2b]
instId_tm [lemma, in PR.stlc]


L

lam [constructor, in PR.stlc]


M

main_lemma [lemma, in PR.sn_inductive_2b]
mstep [inductive, in PR.reduction]
mstep_beta [lemma, in PR.reduction]
mstep_subst [lemma, in PR.reduction]
mstep_inst [lemma, in PR.reduction]
mstep_app [lemma, in PR.reduction]
mstep_lam [lemma, in PR.reduction]
mstep_trans [lemma, in PR.reduction]
mstep_step [constructor, in PR.reduction]
mstep_refl [constructor, in PR.reduction]


N

neutral [definition, in PR.sn_inductive_soundness_1a]
neutral_preservation [lemma, in PR.sn_inductive_soundness_1a]
norm [lemma, in PR.sn_inductive_2b]
null [definition, in PR.fintype]


P

pext [axiom, in PR.axioms]
pi [lemma, in PR.axioms]


R

Red [definition, in PR.sn_inductive_2b]
RedS [definition, in PR.sn_inductive_2b]
redsn [inductive, in PR.sn_inductive_soundness_1a]
redSN_ind_2 [definition, in PR.sn_defs]
redsn_backwards [lemma, in PR.sn_inductive_soundness_1a]
redsn_app [constructor, in PR.sn_inductive_soundness_1a]
redsn_beta [constructor, in PR.sn_inductive_soundness_1a]
reduction [library]
red_var [lemma, in PR.sn_inductive_2b]
ren [definition, in PR.fintype]
rename [lemma, in PR.sn_inductive_2a]
rename_red [lemma, in PR.sn_inductive_2b]
renComp_tm [lemma, in PR.stlc]
renComp'_tm [lemma, in PR.stlc]
renRen_tm [lemma, in PR.stlc]
renRen'_tm [lemma, in PR.stlc]
Ren_tm [instance, in PR.stlc]
ren_tm [definition, in PR.stlc]
ren1 [projection, in PR.fintype]
Ren1 [record, in PR.fintype]
ren1 [constructor, in PR.fintype]
Ren1 [inductive, in PR.fintype]
ren2 [projection, in PR.fintype]
Ren2 [record, in PR.fintype]
ren2 [constructor, in PR.fintype]
Ren2 [inductive, in PR.fintype]
ren3 [projection, in PR.fintype]
Ren3 [record, in PR.fintype]
ren3 [constructor, in PR.fintype]
Ren3 [inductive, in PR.fintype]
ren4 [projection, in PR.fintype]
Ren4 [record, in PR.fintype]
ren4 [constructor, in PR.fintype]
Ren4 [inductive, in PR.fintype]
ren5 [projection, in PR.fintype]
Ren5 [record, in PR.fintype]
ren5 [constructor, in PR.fintype]
Ren5 [inductive, in PR.fintype]
rinstId_tm [lemma, in PR.stlc]
rinstInst_tm [lemma, in PR.stlc]
rinstInst_up_tm_tm [definition, in PR.stlc]
rinst_inst_tm [definition, in PR.stlc]


S

SAbs [constructor, in PR.sn_defs]
SApp [constructor, in PR.sn_defs]
SAppl [constructor, in PR.sn_defs]
SBeta [constructor, in PR.sn_defs]
scons [definition, in PR.fintype]
scons_comp [lemma, in PR.fintype]
scons_eta_id [lemma, in PR.fintype]
scons_eta [lemma, in PR.fintype]
shift [definition, in PR.fintype]
SN [inductive, in PR.sn_defs]
sn [inductive, in PR.sn_defs]
SNe [inductive, in PR.sn_defs]
SNeu [constructor, in PR.sn_defs]
SNe_ind_2 [definition, in PR.sn_defs]
snI [constructor, in PR.sn_defs]
SNRed [inductive, in PR.sn_defs]
SN_multind [definition, in PR.sn_defs]
SN_ind_2 [definition, in PR.sn_defs]
sn_mstep [lemma, in PR.sn_defs]
SN_sn [lemma, in PR.sn_inductive_soundness_1b]
sn_app_neutral [lemma, in PR.sn_inductive_soundness_1a]
sn_confluence [lemma, in PR.sn_inductive_soundness_1a]
sn_subst_tm [lemma, in PR.sn_inductive_soundness_1a]
sn_appL [lemma, in PR.sn_inductive_soundness_1a]
sn_preimage [lemma, in PR.sn_inductive_soundness_1a]
sn_inductive_soundness_1a [library]
sn_inductive_2a [library]
sn_inductive_soundness_1b [library]
sn_inductive_2b [library]
sn_defs [library]
SRed [constructor, in PR.sn_defs]
step [inductive, in PR.reduction]
step_inst [lemma, in PR.reduction]
step_beta' [lemma, in PR.reduction]
step_appR [constructor, in PR.reduction]
step_appL [constructor, in PR.reduction]
step_abs [constructor, in PR.reduction]
step_beta [constructor, in PR.reduction]
stlc [library]
Subst_tm [instance, in PR.stlc]
subst_tm [definition, in PR.stlc]
subst1 [projection, in PR.fintype]
Subst1 [record, in PR.fintype]
subst1 [constructor, in PR.fintype]
Subst1 [inductive, in PR.fintype]
subst2 [projection, in PR.fintype]
Subst2 [record, in PR.fintype]
subst2 [constructor, in PR.fintype]
Subst2 [inductive, in PR.fintype]
subst3 [projection, in PR.fintype]
Subst3 [record, in PR.fintype]
subst3 [constructor, in PR.fintype]
Subst3 [inductive, in PR.fintype]
subst4 [projection, in PR.fintype]
Subst4 [record, in PR.fintype]
subst4 [constructor, in PR.fintype]
Subst4 [inductive, in PR.fintype]
subst5 [projection, in PR.fintype]
Subst5 [record, in PR.fintype]
subst5 [constructor, in PR.fintype]
Subst5 [inductive, in PR.fintype]
SVar [constructor, in PR.sn_defs]


T

tm [inductive, in PR.stlc]
ty [inductive, in PR.stlc]
ty_app [constructor, in PR.sn_inductive_2b]
ty_abs [constructor, in PR.sn_inductive_2b]
ty_var_tm [constructor, in PR.sn_inductive_2b]


U

upExtRen_tm_tm [definition, in PR.stlc]
upExt_tm_tm [definition, in PR.stlc]
upId_tm_tm [definition, in PR.stlc]
upRen_tm_tm [definition, in PR.stlc]
Up_tm_tm [instance, in PR.stlc]
up_tm [projection, in PR.stlc]
Up_tm [record, in PR.stlc]
up_tm [constructor, in PR.stlc]
Up_tm [inductive, in PR.stlc]
up_subst_subst_tm_tm [definition, in PR.stlc]
up_subst_ren_tm_tm [definition, in PR.stlc]
up_ren_subst_tm_tm [definition, in PR.stlc]
up_tm_tm [definition, in PR.stlc]
up_ren_ren [lemma, in PR.fintype]
up_ren [definition, in PR.fintype]


V

Var [record, in PR.fintype]
Var [inductive, in PR.fintype]
VarInstance_tm [instance, in PR.stlc]
varLRen_tm [lemma, in PR.stlc]
varL_tm [lemma, in PR.stlc]
var_tm [constructor, in PR.stlc]
var_zero [definition, in PR.fintype]


other

[ _ ] (fscope) [notation, in PR.stlc]
⟨ _ ⟩ (fscope) [notation, in PR.stlc]
⟨ _ ; _ ⟩ (fscope) [notation, in PR.fintype]
⟨ _ ⟩ (fscope) [notation, in PR.fintype]
_ ⟨ _ ⟩ (subst_scope) [notation, in PR.stlc]
_ [ _ ] (subst_scope) [notation, in PR.stlc]
↑__tm (subst_scope) [notation, in PR.stlc]
↑__tm (subst_scope) [notation, in PR.stlc]
var (subst_scope) [notation, in PR.stlc]
_ __tm (subst_scope) [notation, in PR.stlc]
_ __tm (subst_scope) [notation, in PR.stlc]
↑ (subst_scope) [notation, in PR.fintype]
_ .. (subst_scope) [notation, in PR.fintype]
_ .: _ (subst_scope) [notation, in PR.fintype]
_ [ _ ; _ ] (subst_scope) [notation, in PR.fintype]
_ [ _ ] (subst_scope) [notation, in PR.fintype]
_ ⟨ _ ; _ ; _ ; _ ; _ ⟩ (subst_scope) [notation, in PR.fintype]
_ ⟨ _ ; _ ; _ ; _ ⟩ (subst_scope) [notation, in PR.fintype]
_ ⟨ _ ; _ ; _ ⟩ (subst_scope) [notation, in PR.fintype]
_ ⟨ _ ; _ ⟩ (subst_scope) [notation, in PR.fintype]
_ ⟨ _ ⟩ (subst_scope) [notation, in PR.fintype]
_ |- _ : _ [notation, in PR.sn_inductive_2b]
_ >> _ [notation, in PR.fintype]



Notation Index

C

_ , _ (subst_scope) [in PR.fintype]


other

[ _ ] (fscope) [in PR.stlc]
⟨ _ ⟩ (fscope) [in PR.stlc]
⟨ _ ; _ ⟩ (fscope) [in PR.fintype]
⟨ _ ⟩ (fscope) [in PR.fintype]
_ ⟨ _ ⟩ (subst_scope) [in PR.stlc]
_ [ _ ] (subst_scope) [in PR.stlc]
↑__tm (subst_scope) [in PR.stlc]
↑__tm (subst_scope) [in PR.stlc]
var (subst_scope) [in PR.stlc]
_ __tm (subst_scope) [in PR.stlc]
_ __tm (subst_scope) [in PR.stlc]
↑ (subst_scope) [in PR.fintype]
_ .. (subst_scope) [in PR.fintype]
_ .: _ (subst_scope) [in PR.fintype]
_ [ _ ; _ ] (subst_scope) [in PR.fintype]
_ [ _ ] (subst_scope) [in PR.fintype]
_ ⟨ _ ; _ ; _ ; _ ; _ ⟩ (subst_scope) [in PR.fintype]
_ ⟨ _ ; _ ; _ ; _ ⟩ (subst_scope) [in PR.fintype]
_ ⟨ _ ; _ ; _ ⟩ (subst_scope) [in PR.fintype]
_ ⟨ _ ; _ ⟩ (subst_scope) [in PR.fintype]
_ ⟨ _ ⟩ (subst_scope) [in PR.fintype]
_ |- _ : _ [in PR.sn_inductive_2b]
_ >> _ [in PR.fintype]



Module Index

C

CommaNotation [in PR.fintype]



Library Index

A

axioms


F

fintype


R

reduction


S

sn_inductive_soundness_1a
sn_inductive_2a
sn_inductive_soundness_1b
sn_inductive_2b
sn_defs
stlc



Constructor Index

A

app [in PR.stlc]


B

Base [in PR.stlc]


F

Fun [in PR.stlc]


I

ids [in PR.fintype]


L

lam [in PR.stlc]


M

mstep_step [in PR.reduction]
mstep_refl [in PR.reduction]


R

redsn_app [in PR.sn_inductive_soundness_1a]
redsn_beta [in PR.sn_inductive_soundness_1a]
ren1 [in PR.fintype]
ren2 [in PR.fintype]
ren3 [in PR.fintype]
ren4 [in PR.fintype]
ren5 [in PR.fintype]


S

SAbs [in PR.sn_defs]
SApp [in PR.sn_defs]
SAppl [in PR.sn_defs]
SBeta [in PR.sn_defs]
SNeu [in PR.sn_defs]
snI [in PR.sn_defs]
SRed [in PR.sn_defs]
step_appR [in PR.reduction]
step_appL [in PR.reduction]
step_abs [in PR.reduction]
step_beta [in PR.reduction]
subst1 [in PR.fintype]
subst2 [in PR.fintype]
subst3 [in PR.fintype]
subst4 [in PR.fintype]
subst5 [in PR.fintype]
SVar [in PR.sn_defs]


T

ty_app [in PR.sn_inductive_2b]
ty_abs [in PR.sn_inductive_2b]
ty_var_tm [in PR.sn_inductive_2b]


U

up_tm [in PR.stlc]


V

var_tm [in PR.stlc]



Lemma Index

A

anti_rename [in PR.sn_inductive_2a]


C

closed_appR [in PR.sn_inductive_soundness_1a]
closed_lam [in PR.sn_inductive_soundness_1a]
compComp_tm [in PR.stlc]
compComp'_tm [in PR.stlc]
compRen_tm [in PR.stlc]
compRen'_tm [in PR.stlc]
congr_lam [in PR.stlc]
congr_app [in PR.stlc]
congr_Fun [in PR.stlc]
congr_Base [in PR.stlc]
cr [in PR.sn_inductive_2b]


E

ext_SN [in PR.sn_inductive_2a]


F

fundamental_backwards [in PR.sn_inductive_soundness_1a]


I

id_red [in PR.sn_inductive_2b]
instId_tm [in PR.stlc]


M

main_lemma [in PR.sn_inductive_2b]
mstep_beta [in PR.reduction]
mstep_subst [in PR.reduction]
mstep_inst [in PR.reduction]
mstep_app [in PR.reduction]
mstep_lam [in PR.reduction]
mstep_trans [in PR.reduction]


N

neutral_preservation [in PR.sn_inductive_soundness_1a]
norm [in PR.sn_inductive_2b]


P

pi [in PR.axioms]


R

redsn_backwards [in PR.sn_inductive_soundness_1a]
red_var [in PR.sn_inductive_2b]
rename [in PR.sn_inductive_2a]
rename_red [in PR.sn_inductive_2b]
renComp_tm [in PR.stlc]
renComp'_tm [in PR.stlc]
renRen_tm [in PR.stlc]
renRen'_tm [in PR.stlc]
rinstId_tm [in PR.stlc]
rinstInst_tm [in PR.stlc]


S

scons_comp [in PR.fintype]
scons_eta_id [in PR.fintype]
scons_eta [in PR.fintype]
sn_mstep [in PR.sn_defs]
SN_sn [in PR.sn_inductive_soundness_1b]
sn_app_neutral [in PR.sn_inductive_soundness_1a]
sn_confluence [in PR.sn_inductive_soundness_1a]
sn_subst_tm [in PR.sn_inductive_soundness_1a]
sn_appL [in PR.sn_inductive_soundness_1a]
sn_preimage [in PR.sn_inductive_soundness_1a]
step_inst [in PR.reduction]
step_beta' [in PR.reduction]


U

up_ren_ren [in PR.fintype]


V

varLRen_tm [in PR.stlc]
varL_tm [in PR.stlc]



Axiom Index

P

pext [in PR.axioms]



Inductive Index

H

has_type [in PR.sn_inductive_2b]


M

mstep [in PR.reduction]


R

redsn [in PR.sn_inductive_soundness_1a]
Ren1 [in PR.fintype]
Ren2 [in PR.fintype]
Ren3 [in PR.fintype]
Ren4 [in PR.fintype]
Ren5 [in PR.fintype]


S

SN [in PR.sn_defs]
sn [in PR.sn_defs]
SNe [in PR.sn_defs]
SNRed [in PR.sn_defs]
step [in PR.reduction]
Subst1 [in PR.fintype]
Subst2 [in PR.fintype]
Subst3 [in PR.fintype]
Subst4 [in PR.fintype]
Subst5 [in PR.fintype]


T

tm [in PR.stlc]
ty [in PR.stlc]


U

Up_tm [in PR.stlc]


V

Var [in PR.fintype]



Projection Index

I

ids [in PR.fintype]


R

ren1 [in PR.fintype]
ren2 [in PR.fintype]
ren3 [in PR.fintype]
ren4 [in PR.fintype]
ren5 [in PR.fintype]


S

subst1 [in PR.fintype]
subst2 [in PR.fintype]
subst3 [in PR.fintype]
subst4 [in PR.fintype]
subst5 [in PR.fintype]


U

up_tm [in PR.stlc]



Instance Index

R

Ren_tm [in PR.stlc]


S

Subst_tm [in PR.stlc]


U

Up_tm_tm [in PR.stlc]


V

VarInstance_tm [in PR.stlc]



Definition Index

A

ap [in PR.fintype]
apc [in PR.fintype]


C

comp [in PR.fintype]
compRenRen_tm [in PR.stlc]
compRenSubst_tm [in PR.stlc]
compSubstRen__tm [in PR.stlc]
compSubstSubst_tm [in PR.stlc]
ctx [in PR.sn_inductive_2b]


E

extRen_tm [in PR.stlc]
ext_tm [in PR.stlc]


F

fin [in PR.fintype]
funcomp [in PR.fintype]


I

id [in PR.fintype]
idren [in PR.fintype]
idSubst_tm [in PR.stlc]


N

neutral [in PR.sn_inductive_soundness_1a]
null [in PR.fintype]


R

Red [in PR.sn_inductive_2b]
RedS [in PR.sn_inductive_2b]
redSN_ind_2 [in PR.sn_defs]
ren [in PR.fintype]
ren_tm [in PR.stlc]
rinstInst_up_tm_tm [in PR.stlc]
rinst_inst_tm [in PR.stlc]


S

scons [in PR.fintype]
shift [in PR.fintype]
SNe_ind_2 [in PR.sn_defs]
SN_multind [in PR.sn_defs]
SN_ind_2 [in PR.sn_defs]
subst_tm [in PR.stlc]


U

upExtRen_tm_tm [in PR.stlc]
upExt_tm_tm [in PR.stlc]
upId_tm_tm [in PR.stlc]
upRen_tm_tm [in PR.stlc]
up_subst_subst_tm_tm [in PR.stlc]
up_subst_ren_tm_tm [in PR.stlc]
up_ren_subst_tm_tm [in PR.stlc]
up_tm_tm [in PR.stlc]
up_ren [in PR.fintype]


V

var_zero [in PR.fintype]



Record Index

R

Ren1 [in PR.fintype]
Ren2 [in PR.fintype]
Ren3 [in PR.fintype]
Ren4 [in PR.fintype]
Ren5 [in PR.fintype]


S

Subst1 [in PR.fintype]
Subst2 [in PR.fintype]
Subst3 [in PR.fintype]
Subst4 [in PR.fintype]
Subst5 [in PR.fintype]


U

Up_tm [in PR.stlc]


V

Var [in PR.fintype]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (212 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (24 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1 entry)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (9 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (36 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (51 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1 entry)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (22 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (12 entries)
Instance Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (4 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (40 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (12 entries)