module Generic.Examples.SystemF where

open import Size
open import Data.Unit
open import Data.Bool
open import Data.Product
open import Data.List.Base hiding ([_])
open import Function
open import Relation.Binary.PropositionalEquality hiding ([_])

open import indexed
open import var hiding (_<$>_)
open import varlike
open import environment hiding (_<$>_)
open import Generic.Syntax
open import Generic.Semantics

data Kind : Set where
  Term Type : Kind

system-F  : Desc Kind
system-F  =   `X [] Type (`X [] Type (`∎ Type)) -- arrow
          `+  `X (Type  []) Type (`∎ Type)     -- forall
          `+  `X [] Term (`X [] Term (`∎ Term)) -- app
          `+  `X (Term  []) Term (`∎ Term)     -- lam
          `+  `X [] Term (`X [] Type (`∎ Term)) -- App
          `+  `X (Type  []) Term (`∎ Term)     -- Lam

pattern arr a b = `con (true , a , b , refl)
pattern for b   = `con (false , true , b , refl)

pattern app f t = `con (false , false , true , f , t , refl)
pattern lam b   = `con (false , false , false , true , b , refl)

pattern App f t = `con (false , false , false , false , true , f , t , refl)
pattern Lam b   = `con (false , false , false , false , false , b , refl)

SF : Kind  List Kind  Set
SF = Tm system-F 

data Redex {Γ : List Kind} : SF Term Γ  Set where
  applam   : (b : SF Term (Term  Γ)) (u : SF Term Γ)  Redex (app (lam b) u)
  AppLam   : (b : SF Term (Type  Γ)) (u : SF Type Γ)  Redex (App (Lam b) u)
  -- congruence rules
  [app-l]  : {f : SF Term Γ}  Redex f  (t : SF Term Γ)  Redex (app f t)
  [app-r]  : (f : SF Term Γ) {t : SF Term Γ}  Redex t  Redex (app f t)
  [lam]    : {b : SF Term (Term  Γ)}  Redex b  Redex (lam b)
  [App]    : {f : SF Term Γ}  Redex f  (t : SF Type Γ)  Redex (App f t)
  [Lam]    : {b : SF Term (Type  Γ)}  Redex b  Redex (Lam b)

open import Category.Monad
open import Data.Maybe
import Level
open RawMonadPlus (monadPlus {Level.zero})

redex : {Γ : List Kind} (t : SF Term Γ)  Maybe (Redex t)
redex (app (lam b) u) = just (applam b u)
redex (App (Lam b) u) = just (AppLam b u)
redex (app f t)       = flip [app-l] t <$> redex f  [app-r] f <$> redex t
redex (lam b)         = [lam] <$> redex b
redex (App f t)       = flip [App] t <$> redex f
redex (Lam b)         = [Lam] <$> redex b
redex _ = nothing

fire : {Γ : List Kind} {t : SF Term Γ}  Redex t  SF Term Γ
fire (applam b u)  = sub (base vl^Tm  u) b
fire (AppLam b u)  = sub (base vl^Tm  u) b
fire ([app-l] f t) = app (fire f) t
fire ([app-r] f t) = app f (fire t)
fire ([lam] b)     = lam (fire b)
fire ([App] f t)   = App (fire f) t
fire ([Lam] b)     = Lam (fire b)

open import Coinduction
open import Data.Colist

eval : (Γ : List Kind) (t : SF Term Γ)  Colist (SF Term Γ)
eval Γ t with redex t
... | just r  = t   eval Γ (fire r)
... | nothing = t   []

`id : SF Term []
`id = Lam (lam (`var z))

_ : eval [] (lam (lam (app (lam (app (`var z) (`var z))) (lam (`var z)))))
   (_   (_   (lam (lam (lam (`var z)))   [])))
_ = _   (_   (_   []))