module Generic.Syntax where
open import Size
open import Data.Bool
open import Data.List.All
open import Data.List.Base as L hiding ([_])
open import Data.Product as P hiding (,_)
open import Function hiding (case_of_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import var
open import indexed
open import environment as E hiding (traverse)
data Desc (I : Set) : Set₁ where
`σ : (A : Set) → (A → Desc I) → Desc I
`X : List I → I → Desc I → Desc I
`∎ : I → Desc I
reindex : {I J : Set} → (I → J) → Desc I → Desc J
reindex f (`σ A d) = `σ A λ a → reindex f (d a)
reindex f (`X Δ j d) = `X (L.map f Δ) (f j) (reindex f d)
reindex f (`∎ i) = `∎ (f i)
⟦_⟧ : {I : Set} → Desc I → (List I → I ─Scoped) → I ─Scoped
⟦ `σ A d ⟧ X i Γ = Σ[ a ∈ A ] (⟦ d a ⟧ X i Γ)
⟦ `X Δ j d ⟧ X i Γ = X Δ j Γ × ⟦ d ⟧ X i Γ
⟦ `∎ i′ ⟧ X i Γ = i ≡ i′
Scope : {I : Set} → I ─Scoped → List I → I ─Scoped
Scope T Δ i = (Δ ++_) ⊢ T i
data Tm {I : Set} (d : Desc I) : Size → I ─Scoped where
`var : {s : Size} {i : I} → [ Var i ⟶ Tm d (↑ s) i ]
`con : {s : Size} {i : I} → [ ⟦ d ⟧ (Scope (Tm d s)) i ⟶ Tm d (↑ s) i ]
`con-inj : ∀ {I i Γ} {d : Desc I} {t u : ⟦ d ⟧ (Scope (Tm d ∞)) i Γ} → (Tm d ∞ i Γ ∋ `con t) ≡ `con u → t ≡ u
`con-inj refl = refl
TM : {I : Set} → Desc I → I → Set
TM d i = Tm d ∞ i []
module _ {I : Set} where
infixr 5 _`+_
_`+_ : Desc I → Desc I → Desc I
d `+ e = `σ Bool $ λ isLeft →
if isLeft then d else e
module _ {I : Set} {d e : Desc I} {X : List I → I ─Scoped}
{A : Set} {i : I} {Γ : List I} where
case : (⟦ d ⟧ X i Γ → A) →
(⟦ e ⟧ X i Γ → A) →
(⟦ d `+ e ⟧ X i Γ → A)
case l r (true , t) = l t
case l r (false , t) = r t
module _ {I : Set} where
`Xs : List I → Desc I → Desc I
`Xs js d = foldr (`X []) d js
module _ {I : Set} {d : Desc I} {X : List I → I ─Scoped} {i : I} {Γ : List I} where
unXs : (Δ : List I) → ⟦ `Xs Δ d ⟧ X i Γ →
All (λ i → X [] i Γ) Δ × ⟦ d ⟧ X i Γ
unXs [] v = [] , v
unXs (σ ∷ Δ) (r , v) = P.map (r ∷_) id (unXs Δ v)
module _ {I : Set} {X Y : List I → I ─Scoped} where
fmap : (d : Desc I) {Γ Δ : List I} {i : I} → (∀ Θ i → X Θ i Γ → Y Θ i Δ) → ⟦ d ⟧ X i Γ → ⟦ d ⟧ Y i Δ
fmap (`σ A d) f = P.map id (fmap (d _) f)
fmap (`X Δ j d) f = P.map (f Δ j) (fmap d f)
fmap (`∎ i) f = id
fmap-ext : (d : Desc I) {Γ Δ : List I} {i : I} {f g : ∀ Θ i → X Θ i Γ → Y Θ i Δ} →
(f≈g : ∀ Θ i x → f Θ i x ≡ g Θ i x) (v : ⟦ d ⟧ X i Γ) →
fmap d f v ≡ fmap d g v
fmap-ext (`σ A d) f≈g (a , v) = cong (a ,_) (fmap-ext (d a) f≈g v)
fmap-ext (`X Δ j d) f≈g (r , v) = cong₂ _,_ (f≈g Δ j r) (fmap-ext d f≈g v)
fmap-ext (`∎ i) f≈g v = refl
module _ {I : Set} {X : List I → I ─Scoped} where
fmap-id : (d : Desc I) {Γ : List I} {i : I} (v : ⟦ d ⟧ X i Γ) → fmap d (λ _ _ x → x) v ≡ v
fmap-id (`σ A d) (a , v) = cong (a ,_) (fmap-id (d a) v)
fmap-id (`X Δ j d) (r , v) = cong (r ,_) (fmap-id d v)
fmap-id (`∎ x) v = refl
module _ {I : Set} {X Y Z : List I → I ─Scoped} where
fmap² : (d : Desc I) {Γ Δ Θ : List I} {i : I}
(f : ∀ Φ i → X Φ i Γ → Y Φ i Δ) (g : ∀ Φ i → Y Φ i Δ → Z Φ i Θ)
(t : ⟦ d ⟧ X i Γ) → fmap {I} {Y} {Z} d g (fmap d f t) ≡ fmap d (λ Φ i → g Φ i ∘ f Φ i) t
fmap² (`σ A d) f g (a , t) = cong (_ ,_) (fmap² (d a) f g t)
fmap² (`X Δ j d) f g (r , t) = cong (_ ,_) (fmap² d f g t)
fmap² (`∎ i) f g t = refl
open import Category.Applicative
module _ {I : Set} {X : List I → I ─Scoped} {A : Set → Set} (app : RawApplicative A) where
module A = RawApplicative app
open A
traverse : {i : I} (d : Desc I) → [ ⟦ d ⟧ (λ Δ j Γ → A (X Δ j Γ)) i ⟶ A ∘ ⟦ d ⟧ X i ]
traverse (`σ A d) (a , t) = (λ b → a , b) A.<$> traverse (d a) t
traverse (`X Δ j d) (r , t) = _,_ A.<$> r ⊛ traverse d t
traverse (`∎ i) t = pure t